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a b s t r a c t

A kernel-based algorithm is potentially very efficient for predicting key quality variables of nonlinear
chemical and biological processes by mapping an original input space into a high-dimensional feature
space. Nonlinear data structure in the original space is most likely to be linear at the high-dimensional
feature space. In this work, kernel partial least squares (PLS) was applied to predict inferentially key pro-
cess variables in an industrial cokes wastewater treatment plant. The primary motive was to give operators
eywords:
ernel-based algorithm

ndustrial wastewater treatment plant
artial least squares
onlinearity measure
n-line estimation

and process engineers a reliable and accurate estimation of key process variables such as chemical oxygen
demand, total nitrogen, and cyanides concentrations in real time. This would allow them to arrive at the
optimum operational strategy in an early stage and minimize damage to the operating units as shock
loadings of toxic compounds in the influent often cause process instability. The proposed kernel-based
algorithm could effectively capture the nonlinear relationship in the process variables and show far bet-
ter performance in prediction of the quality variables compared to the conventional linear PLS and other
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nonlinear PLS method.

. Introduction

Cokes wastewater is generated at coal coking, coal gas purifi-
ation, and by-product recovery operations in an integrated
teel-making plant [1,2]. The wastewater consists of ammonia,
yanide, thiocyanate, sulfides, and a wide variety of complex hydro-
arbons such as phenolics, polynuclear aromatic hydrocarbons,
nd various heterocyclic compounds [3,4]. Most of the chemical
xygen demand (COD) originates from phenol, which is a toxic
nhibitory substrate but is also a useful carbon source for accli-

atized microorganisms [5]. Cyanide is a highly toxic organic
ompound even at low concentrations and its presence in aqueous
edia is severely restricted by regulations [6,7].
Conventional treatment of high-strength cokes wastewater
omprises expensive caustic treatment and steam stripping to
educe the pollutant loads, followed by biological treatment [8,9].
mong the proven biological treatment methods for cokes wastew-
ter, activated sludge processes have been widely used [10–12].

∗ Corresponding author. Tel.: +82 53 950 7286; fax: +82 53 950 6579.
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owever, these treatment systems exhibit varying degrees of per-
ormance efficiency. In particular, a single-sludge process with
ecycle of nitrified effluent, i.e. pre-denitrification process, has been
referred in Korea, because of its simplicity and economic bene-
ts [3,8,13]. The pre-denitrification process consists of two distinct
icrobial reactions under anoxic followed by aerobic conditions. In

he anoxic condition, heterotrophic denitrifying bacteria convert
itrate into nitrogen gas using phenols as a carbon source, thus
ost of phenols are removed in this step. Besides, very toxic free

yanide can be removed in some degree by anaerobes. In spite of its
cute toxicity, it has been reported that various anaerobes, which
re acclimated indigenous microorganisms in biological wastewa-
er treatment plants, can degrade cyanide compounds [14]. In the
erobic condition, autotrophic nitrifying bacteria convert ammo-
ia into nitrate, while autotrophic thiocyanate-degrading bacteria
onvert thiocyanate into ammonia, sulfate, and bicarbonate [15].
hese successive microbial reactions can remove most of toxic

ompounds within the cokes wastewater. However, a full-scale
re-denitrification process has been occasionally unstable due to

nhibitory effects of toxic compounds on nitrification which is com-
only the rate-limiting step of the overall nitrogen removal. In

articular, the increased loading of toxic compounds such as phenol

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:daesung@knu.ac.kr
dx.doi.org/10.1016/j.jhazmat.2008.04.004
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nd free cyanide often caused a failure in nitrogen removal. Further-
ore, the recovery of nitrification after an inhibitory event takes

ery long time (weeks), leaving the treatment system vulnerable
o permit violations and the downstream environment vulnerable
o ecological damage.

With increasingly stringent regulations of effluent quality, pro-
ess monitoring and control have become important to enhance
rocess performance by detecting disturbances leading to abnor-
al process operation in an early stage and to cope with influent

ariations that are typical of the cokes wastewater treatment
lant. However, the lack of suitable on-line sensors for monitor-

ng key process variables such as COD, total nitrogen (TN), and
yanides concentrations limits the effective control of effluent
uality. Although these key process variables can be measured
y laboratory analyses, a significant time delay in the range
f a few hours is usually unavoidable. It is normally too late
o achieve well-timed adaptive process control accommodating
nfluent fluctuation and other disturbances. To overcome these
roblems, inferential sensors, as software sensors, can be devel-
ped to estimate hard-to-measure process variables from other
asily measurable process variables and historical operation data.
n general, a structured process model developed from the infor-

ation of process behaviors has been considered to be the most
ffective way of simulating and predicting processes [16,17]. But
stablishing a structured model is a formidable task in biological
astewater treatment plants as a multitude of microbial reactions

oupled with environmental interactions is normally nonlinear,
ime-variable, and still uncertain.

Partial least squares (PLS) is a projection method for analyzing
historical reference distribution of the measurement trajectories

rom past successful operations in a reduced latent vector space and
omparing the behaviors of new operations to this reference dis-
ribution. However, when PLS is applied to chemical and biological
rocesses, there have been some difficulties in its practical appli-
ations. Although it is an intrinsically linear method in the basic
orm, most real problems are inherently nonlinear. The minor latent
ariables from linear PLS models cannot always be discarded as
hey may not only describe noise or negligible variance-covariance
tructures in the data, but they may also encapsulate significant
nformation about the nonlinear nature of the problem [18]. A num-
er of methods have been proposed to integrate nonlinear features
ithin the linear PLS framework. A quadratic PLS method was pro-
osed to fit the functional relationship between each pair of latent
cores by quadratic regression [19]. Neural networks were also
ncorporated into linear PLS to identify the relationship between
he input and the output scores, while retaining the outer map-
ing framework of the linear PLS algorithm [20,21]. In recent years,
onlinear kernel-based algorithms as kernel partial least squares
KPLS) have been proposed [22,23]. The basic idea of KPLS is first
o map each point in an original data space into a feature space
ia nonlinear mapping and then to develop a linear PLS model in
he mapped space. According to Cover’s theorem, nonlinear data
tructure in the original space is most likely to be linear after
igh-dimensional nonlinear mapping [24]. Therefore, KPLS can effi-
iently compute latent variables in the feature space by means
f integral operators and nonlinear kernel functions. Compared
o other nonlinear methods, the main advantage of the kernel-
ased algorithm is that it does not involve nonlinear optimization.

t essentially requires only linear algebra, making it as simple as
he conventional linear PLS. In addition, because of its ability to

se different kernel functions, KPLS can handle a wide range of
onlinearities.

In the application investigated here, different PLS modeling
pproaches are employed to develop on-line estimation of the key
rocess variables in minimal time and with minimal cost. The only
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nformation required to infer the key process variables is the his-
orical data collected from the past successful operations and easily

easurable on-line sensor values such as volumetric flowrate, dis-
olved oxygen, pH, etc. The primary motive is to give operators and
rocess engineers a guideline that would allow them to arrive at the
ptimum operational strategy and minimize damage to the oper-
ting unit as shock loadings of toxic compounds such as phenol
nd cyanide in the influent often cause process instability, which
an lead to the death of the effective microorganisms and leakage
f organic carbon. The effectiveness of the kernel-based method is
emonstrated by modeling capabilities based on its performance
haracteristics and prediction accuracy compared with the conven-
ional linear PLS and other nonlinear PLS methods.

. Materials and methods

.1. Industrial cokes wastewater treatment plant

The cokes wastewater treatment plant (CWTP) at the steel-
aking company in Korea is a conventional activated sludge unit

s shown in Fig. 1. It was designed for the removal of toxic organic
ollutants from the cokes-making plant. Since a high concentration
f nitrogen compounds was found inhibitory to biodegradation,
retreatment steps such as ammonia stripping were employed to
ender the wastewater more amendable to biodegradation. To alle-
iate the impact of high concentrations of deleterious substances
n the biological treatment, an equalization tank was installed
fter the preliminary treatment stage and before the aeration tanks
f the activated sludge process. The hydraulic retention time of
he CWTP was approximately 2.7 d. Oxygen was supplied by sub-

erged mechanical aerators. In the aerobic zone, the nitrification
as carried out, and the nitrate produced in this zone was recy-

led with the mixed liquor to the first anoxic tank. Concentrated
ludge from the bottom of the settler was split into two streams:
he first was recycled to the beginning of the first anoxic tank and
he other was treated in view of incineration of the waste sludge.
he effluent from the settler was passed through chemical treat-
ent units to remove hazardous heavy metal ions and to reduce

he level of suspended solids and organic matter. Operational data
f almost 5 months were collected at 8-h intervals (k). All samples
ere analyzed for mixed liquor suspended solids (MLSS), COD, TN,

otal cyanides, and phenol according to the Standard Methods [25].
O, pH, oxidation reduction potential (ORP), and volumetric flow

ates were also measured at each sampling time. This measuring
ampaign resulted in 420 operational data sets in total. All the mea-
urement variables are automatically stored at a database by a data
cquisition system. All variables used in model identification are
hown in Table 1. The predictor matrix X consists of 27 measure-
ent variables either at time k − 1 or at time k. The response matrix
consists of the key process variables as COD, TN, and total cyanides

n the effluent at time k. These three variables were selected as they
re key indicators for performance of the CWTP. The first 200 sets
f data were used for training and the remaining 220 data sets for
he validation of the developed models.

.2. Partial least squares

PLS is a linear multivariate method for relating the process
ariables X with responses Y. PLS can analyze data with strongly

ollinear, noisy, and numerous variables in both X and Y [26]. PLS
educes the dimension of the predictor variables by extracting fac-
ors or latent variables that are correlated with Y while capturing a
arge amount of the variations in X. This means that PLS maximizes
he covariance between matrices X and Y.
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Fig. 1. Schematic diagram of th

In PLS, the scaled matrices X and Y are decomposed into score
ectors (t and u), loading vectors (p and q), and residual error matri-
es (E and F):

X =
a∑

i=1

tip
T
i + E

Y =
a∑

i=1

uiq
T
i + F

(1)

here a is the number of latent variables. In an inner relation, the
core vector t is linearly regressed against the score vector u.

i = biti + hi (2)

here b is a regression coefficient that is determined by minimizing

he residual h. It is crucial to determine the optimal number of latent
ariables and cross-validation is a practical and reliable way to test
he predictive significance of each PLS component. There are several
lgorithms to calculate the PLS model parameters. In this work, the
IPALS algorithm was used with the exchange of scores [27].

r
i
c
w
r

able 1
rocess variables in the cokes wastewater treatment plant

ariable Symbol Unit

redictor (X)

Qin m3/h
CNin mg/L
SCNin mg/L
CODin mg/L
Phenolin mg/L
NH4

+
in mg/L

TNin mg/L
pHin –
Tempin

◦C
pHanoxic –
ORPanoxic mV
Tempanoxic

◦C
pHaerobic –
ORPaerobic mV
Tempaerobic

◦C
DOaerobic mg/L
MLSSaerobic mg/L
QR m3/h
Qw m3/h
Qinternal m3/h
pHeff –
ORPeff mV
Tempeff

◦C
SVI mL/g
CODs mg/L
TNs mg/L
CNs mg/L

esponse (Y)
CODeff mg/L
TNeff mg/L
CNeff mg/L
s wastewater treatment plant.

.3. Neural network partial least squares

To capture nonlinear structures between the predictor block
nd the responses, the PLS model can be extended to nonlinear
LS models [18]. Neural network PLS (NNPLS) is an integration of
eural networks with PLS to model nonlinear processes with input
ollinearity [20]. The input and output variables are projected onto
he latent space to remove collinearity, and then each latent vari-
ble pair is mapped with a single-input single-output (SISO) neural
etwork as follows:

i = F(ti) + vi (3)

here F(·) stands for the inner relation represented by a neural
etwork and v is the residuals. The neural network is trained to
apture the nonlinearity in the projected latent space. The major
dvantage of NNPLS method is that it decomposes a multivariate

egression problem into a number of univariate regressors so that
t can circumvent the over-parameterization problem. In this appli-
ation, a feed-forward back-propagation neural network (FBNN)
ith sigmoidal functions was used to identify the nonlinear inner

egression model.

Description

Volumetric flowrate in the influent at time k − 1
Total cyanides concentration in the influent at time k − 1
Thiocyanate in the influent at time k − 1
COD in the influent at time k − 1
Phenol concentration in the influent at time k − 1
Ammonium concentration in the influent at time k − 1
Total nitrogen in the influent at time k − 1
pH in the influent at time k
Temperature in the influent at time k
pH in the anoxic tank at time k
ORP in the anoxic tank at time k
Temperature in the anoxic tank at time k
pH in the aerobic tank at time k
ORP in the aerobic tank at time k
Temperature in the aerobic tank at time k
DO in the aerobic tank at time k
MLSS concentration at time k − 1
Returned sludge flowrate at time k
Waste sludge volumetric flowrate at time k
Internal recycle flowrate at time k
pH in the effluent at time k
ORP in the effluent at time k
Temperature in the effluent at time k
Sludge volume index at time k − 1
COD in the settler at time k − 1
TN in the settler at time k − 1
Total cyanides concentration in the settler at time k − 1

COD in the effluent at time k
TN in the effluent at time k
Total cyanides concentration in the effluent at time k
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Comparison of the models’ performance
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into four disjunct regions of 105 samples each. The process vari-
ables were normalized with respect to the mean and variance of the
regions for which the accuracy bounds were computed. Then linear
PLS models were developed for each of these disjunct regions where
the accuracy bounds for the sum of the discarded eigenvalues were
S.H. Woo et al. / Journal of Haza

.4. Kernel partial least squares

The KPLS method is based on mapping of the original input data
nto a high-dimensional feature space � where a linear PLS model
s created. By nonlinear mapping �: x ∈ �n → �(x) ∈ �, a KPLS algo-
ithm can be derived from a sequence of NIPALS steps and has the
ollowing formulation [23].

. Initialize score vector w as equal to any column of Y.

. Calculate scores u = ��Tw and normalize u to ||u|| = 1, where �
is a matrix of regressors.

. Regress columns of Y on u: c = YTu, where c is a weight vector.

. Calculate a new score vector w for Y: w = Yc and then normalize
w to ||w|| = 1.

. Repeat steps 2–4 until convergence of w.

. Deflate ��T and Y matrices:

��T = (� − uuT�)(� − uuT�)
T

(4)

Y = Y − uuTY (5)

. Go to step 1 to calculate the next latent variable.

Without explicitly mapping into the high-dimensional feature
pace, a kernel function can be used to compute the dot products
s follows:

(xi, xj) = �(xi)
T�(xj) (6)

�T represents the (n × n) kernel Gram matrix K of the cross dot
roducts between all mapped input data points �(xi), i = 1, . . ., n.
he deflation of the ��T = K matrix after extraction of the u com-
onents is then given by:

= (I − uuT)K(I − uuT) (7)

here I is an m-dimensional identity matrix. Taking into account
ormalized scores u, the prediction of the KPLS model on training
ata Ŷ is defined as:

ˆ = KW(UTKW)
−1

UTY = UUTY (8)

or predictions on new observation data Ŷt, the regression can be
ritten as:

ˆ t = KtW(UTKW)
−1

UTY (9)

here Kt is the test matrix whose elements are Kij = K(xi, xj) where
i and xj present the validation and training data points, respec-
ively.

. Results and discussion

PLS modeling approaches were employed to develop an infer-
ntial prediction model in minimal time and with minimal cost.
hree different PLS modeling strategies were applied to the CWTP.
he capabilities of the PLS modeling approaches were assessed
hrough their prediction accuracy and performance characteristics.
he performance of each model was evaluated in terms of the root-
ean-square-error (RMSE) criterion. The RMSE performance index
as defined as:
MSE =
√∑

(ŷ − y)2/m (10)

here y presents the measured values, ŷ presents the correspond-
ng predicted values and m is the number of observations.

F
p

inear PLS 8.427 16.815 −6577
NPLS 6.825 15.750 −5823
PLS 6.646 13.259 −5579

.1. Linear partial least squares model

First, a linear PLS model was built between the predictor
ariables X and the response variables Y. The objective was to deter-
ine how well the linear model works and to compare the results

o those of the nonlinear models later. On the basis of the cross-
alidation results, five latent variables were included in the model.
his explained 39.94% of the variance of matrix X and 69.96% of
atrix Y. The RMSE values for the training and validation data sets
ere 8.427 and 16.815, respectively (Table 2). The simulation results

f the linear PLS model are given in Fig. 2. This model predicted the
ynamics of the wastewater treatment process with a relatively
ood accuracy for the calibration data set, but there was a significant
ismatch between the model prediction and actual plant data in

he later part of COD, and almost all TN and total cyanides profiles in
he validation data set. In particular, it showed a bias in the predic-
ion of the validation data set of total cyanides. This exemplified the
eakness of the linear multivariate regression model. It indicates

hat the linear PLS model could not adequately describe the CWTP
hat is inherently nonlinear and exposed to various disturbances
uch as influent composition variations, temperature changes, and
quipment defects.

A nonlinearity measure for PLS model was calculated to assess
he nonlinearity in data [28]. The operation data sets were divided
ig. 2. Prediction results of the linear PLS (grey dot: measured values, solid line:
redicted values).
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Fig. 4. Prediction results of the NNPLS (grey dot: measured values, solid line: pre-
dicted values).

Fig. 5. Score plot of the first latent factor (grey dot: data points, dot line: inner model
of the linear PLS, solid line: inner model of the NNPLS).
ig. 3. Graphical representation of nonlinearity measure for accuracy bounds for
rst of four disjunct regions.

btained. Fig. 3 is a graphical representation of the case where the
ccuracy bounds were obtained for the first disjunct region. While
he sum of the discarded eigenvalues for the first disjunct region
as inside the accuracy bounds, those for other regions fell outside

hese bounds. This implied that the error variance of the linear PLS
odel residuals was larger than could be explained by the uncer-

ainty in determining the correlation matrix and hence a nonlinear
odel is required for the CWTP.

.2. Neural network partial least squares model

In the application of the NNPLS to the CWPT, a FBNN with
igmoidal functions was used to identify the nonlinear inner regres-
ion. The simplified cross-validation was used to determine the
ptimal number of factors [29]. Each factor was modeled using a
ISO network. The neural network was trained to capture the non-
inearity in the projected latent space using a conjugate gradient
ptimization. The number of hidden units was also determined
utomatically by simplified cross-validation. The same data was
lso used to compare the linear PLS method with the NNPLS model.
ive latent variables were included into the NNPLS model, which
hen explained 52.74% of the variance of matrix X and 74.03% of

atrix Y. The RMSE values for the training and validation data sets
ere 6.825 and 15.750, respectively (Table 2). It shows that the
NPLS gives better prediction results than the linear PLS model.
he simulation results of the NNPLS model are given in Fig. 4. Fig. 5
hows the first principal inner relation between the X and Y blocks
rom both the linear PLS and NNPLS models. As shown in Fig. 5,
he linear PLS regression gives a best linear least-squares model,
ut the NNPLS model captures the system’s nonlinearity and thus
utperforms the linear PLS model.

.3. Kernel partial least squares model

A KPLS model was then developed with a radial basis kernel
unction. In this application, the radial basis function was deter-

ined as the best one from the RMSE value of the validation data
et. Both the width parameter � and the number of principal com-
onents in the feature space should be determined to optimize
he KPLS model. For this purpose, a three-dimensional response
urface, based on the RMSE value, was generated to study the inter-
ction between the two parameters as shown in Fig. 6. The surface
lot shows a clear minimum point when the number of principal
omponents and the width of the kernel function were 9 and 13,
espectively. These values were used as the optimal parameters in
he KPLS model. The developed KPLS model explained 86.52% of the
ariance of matrix Y. The captured variance of matrix X could not
e calculated because it is impossible to find an inverse mapping

unction from the feature space to the original space. The RMSE val-
es for the training and validation data sets were 6.646 and 13.259,
espectively (Table 2). Based on the RMSE values, the KPLS gave the
est prediction performance compared to the linear and nonlinear
LS methods. This clearly indicates that KPLS benefitting from the Fig. 6. Three-dimensional surface plot of the KPLS.
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ig. 7. Prediction results of the KPLS (grey dot: measured values, solid line: predicted
alues).

inear data structure in the feature space could capture the nonlin-
arities in the original data space better than the NNPLS method.
ig. 7 shows the simulation results of the KPLS model. This figure,
hen it is compared with Figs. 2 and 4, also clearly shows that KPLS

ives much better prediction results than the linear PLS model. In
ddition, the KPLS model gave very little bias for the validation data
et of total cyanides concentrations.

However, the goodness of fit for the different PLS modeling
pproaches with different numbers of degrees of freedom cannot
e assessed only by the RMSE values. More complex models with

arger numbers of parameters will improve the model fit to the data
ecause it reduces the RMSE of the residuals between the model
redictions and the corresponding measured values. It is, there-
ore, necessary to have quantitative measures of model adequacy in
rder to decide between competing model structures. For large data
ets, the appropriate criterion to use is the Bayesian information
riterion (BIC) [30]:

IC = L(
�
ϑ|yij) − np/2 ln(m/2�) (11)

here L is the likelihood function of the model,
�
ϑ denotes the maxi-

um likelihood estimates of the vector of unknown parameters, np

s the number of parameters and m is the number of measurements.
or the likelihood function L, after taking the natural logarithm and
aximizing with respect to the unknown parameters, the maxi-
ized logarithmic likelihood can be obtained [31]:

(
�
ϑ|yij) = −(m/2) ln

{∑
[yij − f (

�
ϑ|xij)]

2
}

(12)

here f (
�
ϑ|xij) is the model output at the ith value of the input xj.

rom Eqs. (11) and (12), a model with a high BIC is preferable to one
ith a lower value [32]. The KPLS model’s BIC value was higher than

hose of the linear PLS and NNPLS models (Table 2), implying that

he KPLS model is even a much better model in this direct quanti-
ative comparison. These results consistently showed that the KPLS

odel outperformed other linear and nonlinear PLS models in the
spect of both model prediction and complexity.

[

[

Materials 161 (2009) 538–544 543

. Conclusions

Although the conventional PLS modeling methods give a lin-
ar model from a lot of collinear measurements, it is not capable
f modeling nonlinear systems. In this work, a KPLS method was
pplied to the CWTP. The KPLS mapped the nonlinear input space
nto a high-dimensional feature space where the data structure
s likely to be linear. Principal components in the feature space

ere calculated by means of integral operators and nonlinear
ernel functions. It required only linear algebra to develop a pro-
ess modeling system compared to other nonlinear methods that
nvolve nonlinear optimization. The KPLS gave a much better pre-
iction performance than the linear and nonlinear PLS methods.
he increased prediction performance of KPLS could be explained
y the fact that the biological wastewater treatment plant is an
nherently nonlinear process, and the KPLS model could capture
he nonlinearities in the original data space benefiting from the
inear data structure in the feature space. However, in this applica-
ion, the model’s results should not be extrapolated without care as
he training and validation data sets showed rather little dynamics.
ince the developed model was derived from every 8 h, it might
ot be appropriate for control purposes. But it could give opera-
ors and process engineers a reliable and accurate estimation of the
ey process variables in real time that would allow them to arrive
t the optimum operational strategy for the CWTP. The successful
pplication of the KPLS method to the industrial wastewater treat-
ent plant has demonstrated the feasibility and effectiveness of

he kernel-based algorithm. The methodology is fairly general and
s applicable to most chemical and biological wastewater treatment
lants.
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